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ABSTRACT 
 
 

Modeling fatigue, sleepiness, and performance is of 

significant interest to military leaders because military 

operations often provide limited sleep opportunities for 

many individuals.  The ANAM Readiness Evaluation System 

(ARES) Commander Battery is under consideration as a quick, 

inexpensive method of testing a crewmember’s level of 

functioning.  This thesis analyzed data collected during a 

previous field fatigue study conducted at the Naval Officer 

Indoctrination School (OIS) in Newport, Rhode Island.  

Linear mixed-effects models were developed and ARES data 

were evaluated for how they vary across participants, 

testing sessions, and time of day.   
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EXECUTIVE SUMMARY 

 

Modeling fatigue, sleepiness, and performance is of 

significant interest in the military operational community.  

Because a person is not a reliable judge of his or her own 

level of biological sleepiness, commanders require an 

objective means to assess their crewmembers’ ability to 

perform.  One such method is FAST, the software application 

based upon SAFTETM. SAFTETM is a biomathematical model 

designed to predict individual and group performance under 

conditions of sleep deprivation.  Also, psychomotor 

vigilance tests, such as the ARES Commander Battery, 

provide instant feedback on an individual’s ability to 

sustain levels of concentration, working memory, and mental 

efficiency. 

FAST is currently the preferred tool used to predict 

performance.  However, days of sleep and activity data must 

be collected before a meaningful assessment can be 

produced. In contrast, the ARES Commander Battery takes 

less than 10 minutes and can be administered on a digital 

personal assistant.  ARES is a new software package that 

has not been validated, but is under consideration as a 

quick, inexpensive method of testing an individual’s level 

of functioning in a military operational setting. 

Sleep and performance measures were collected during a 

previous study conducted in 2003 at Officer Indoctrination 

School (OIS) in Newport, Rhode Island.  This thesis 

includes an analysis of the OIS data. Research goals 

consist of identifying how ARES Simple Reaction Time and 

Continuous Running Memory test scores vary by subject, 



 xiv

session, and time of day.  Additionally, the relationship 

between ARES data and FAST performance effectiveness scores 

were explored. Mixed-effects modeling was employed in order 

to isolate variability due to both inter- and intra-

individual differences.  

Overall, the ARES variables,  mean, median, and 

standard deviation of participants’ reaction time for 

correct responses, show promise as instantaneous indicators 

of human performance decrement under conditions of mild 

sleep deprivation (i.e., an average of six hours per 

night).  Also, it was discovered that throughput did not 

account for variance in FAST performance effectiveness.  

Finally, inter-individual differences accounted for a 

significant portion of the variability in ARES simple 

reaction time scores, but the session explained much of the 

variability in ARES continuous running memory scores, 

suggesting a possible learning effect.   
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I. INTRODUCTION  

A. BACKGROUND AND STATEMENT OF THE PROBLEM 

Sleep and performance measures were collected during a 

previous study conducted in 2003 at Officer Indoctrination 

School (OIS) in Newport, Rhode Island. This thesis will 

analyze resulting ANAM Readiness Evaluation System (ARES), 

actigraphy, and sleep/activity log data. Analysis will 

include how ARES scores vary by subject, session, time of 

day, quality and quantity of sleep. 

The actigraphy and sleep/activity log data have been 

interpreted, coded and imported into Fatigue Avoidance 

Scheduling Tool (FAST) to calculate subjects’ predicted 

effectiveness.  FAST is currently the preferred tool used 

to predict performance; it is based upon sleep debt from 

previous days, a sleep reservoir, and circadian 

oscillators.  However, days of sleep and activity data must 

be collected before a meaningful assessment can be 

produced. In contrast, the ARES Commander Battery takes 

less than 10 minutes and can be administered on a digital 

personal assistant.  ARES is a new software package that 

has not been validated, but is under consideration as a 

quick, inexpensive method of testing an individual’s level 

of functioning in a military operational setting. 

B. LITERATURE REVIEW 

1. Sleep Deprivation and Performance Loss 

Modern sleep research began in the mid-1950s with the 

discovery of two distinct states of sleep. Over the past 40 

years, extensive research has been conducted on sleep, 

sleepiness, circadian rhythms, and sleep disorders, and how 

these factors affect waking alertness and performance 
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(Rosekind et al., 1996).  Discussions of fatigue and 

subjective sleepiness and their relationship to alertness 

and performance occupy much of the literature.  Although 

opinions differ, one subject matter expert gives the 

following definitions of fatigue, alertness and 

performance: 

. . . Performance comprises cognitive functions 
ranging in complexity from simple psychomotor 
reaction time, to logical reasoning, working 
memory and complex executive functions.  By 
alertness is meant selective attention, 
vigilance, and attentional control.  Fatigue 
refers to subjective reports of loss of desire or 
ability to continue performing.  Additionally, 
subjective sleepiness is used [to describe] 
subjective reports of sleepiness or the desire to 
sleep  (Van Dongen & Dinges, 2000, p. 2). 

a.   Military Research 

Department of Defense funds research on the 

effects of sleep deprivation on human performance because 

military operations often provide limited sleep 

opportunities for many individuals.  For example, the 

planned 96-hr SURGEOP on the USS NIMITZ required reduced 

sleep among personnel (Neri, Dinges, and Rosekind, 1997). 

Commanders need to know how long their crew can go without 

sleep before significant impairment. Captain David Neri, 

MSC, USN, Deputy Director of the Cognitive, Neural, and 

Biomolecular Science and Technology Division, Office of 

Naval Research writes about recent developments in modeling 

fatigue and performance:  

Stakes are high in the areas in which models are 
being used to inform, guide and confirm.  These 
areas of current application include, but are not 
limited to:  predicting individual and group 
performance; evaluating and guiding counter-
measure use; schedule evaluation and design; 
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policy making (e.g., hours of service 
regulations); and accident assessment.  For many 
in the operational community, biomathematical 
models of fatigue, sleepiness, and performance 
have become a significant issue.  Military 
leaders, government policy makers, and commercial 
customers are looking for concrete answers to 
questions such as:  how long can one work, fly or 
drive without rest or sleep; how much sleep is 
required for recovery; what is the minimum sleep 
necessary to sustain performance; when is a 
person most at risk for an error, incident, or 
accident; and what countermeasures can be taken 
at what time(s) to reduce these risks to an 
acceptable level?  (Neri, 2004, p. A1) 

b. Problems to Expect with Extended Sleep 
Deprivation 

Sleep deprivation results in physiological and 

cognitive changes.  Problems to expect include micro-

sleeps, lapses in performance, reduced vigilance, poor 

communication, impaired decision making and short-term 

memory, and behavioral fixation.  Additionally, sleep 

deprived individuals exhibit behavioral changes, such as 

slowed reaction times, increased errors and reduced 

performance on primary tasks. Degraded mood and reduced 

motivation have also been cited as deleterious effects due 

to sleep deprivation (Neri et al., 1997).  

c.   National Impact 

The impact of sleep-related impairment is not 

limited to military operations.  The 2001 Sleep in America 

Poll reported the prevalence of civilian sleep-related 

mishaps: 

100,000 sleep-related car crashes per year;  

 1,500 fatalities 

53% of adults report driving drowsy; 19%  
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 dozed off at the wheel 

27% report being sleepy at work at  

 least 2 days/week 

19% of adults report making errors at work;  

 2% injured     

   (National Sleep Foundation, 2001) 

Several national disasters have been attributed 

to severe sleep deprivation.  Two of these include the 

Exxon Valdez and Challenger incidents.  On the night of 

March 24, 1989, the Exxon Valdez oil tanker ran aground, 

spilling millions of gallons of crude oil into the Prince 

William Sound.  The cleanup cost was over $2 billion, 

leaving incalculable environmental damage.  Additionally, 

Exxon Corporation was assessed $5 billion in punitive 

damages.  While the media focused on the Captain’s alcohol 

consumption, the National Transportation Safety Board 

(NTSB) found that sleep deprivation was the direct cause of 

the accident (Dement & Vaughan, 1999).  The following is an 

excerpt from Dement and Vaughan (1999): 

The report noted that on the March night when the 
Exxon Valdez steamed out of Valdez [, Alaska] 
there were ice floes across part of the shipping 
lane, forcing the ship to turn to avoid them.  
The captain determined that this maneuver could 
be done safely if the ship was steered back to 
the main channel when it was abeam of a well-
known landmark, Busby Island.  With this plan 
established, he turned over command to the third 
mate and left the bridge.  Although news reports 
linked much of what happened next to the 
captain’s alcohol consumption, the captain was 
off the bridge well before the accident.  The 
direct cause of America’s worst oil spill was the 
behavior of the third mate, who had slept only 6 
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hours in the previous 48 and was severely sleep 
deprived. 

 As the Exxon Valdez passed Busby Island, the 
third mate ordered the helm to starboard, but he 
didn’t notice that the autopilot was still on and 
the ship did not turn.  Instead it plowed farther 
out of the channel.  Twice lookouts warned the 
third mate about the position of lights marking 
the reef, but he didn’t change or check his 
previous orders.  His brain was not interpreting 
the danger in what they said.  Finally he noticed 
that he was far outside the channel, turned off 
the autopilot, and tried hard to get the great 
ship pointed back to safety—too late (p. 52). 

Another national tragedy was the explosion of the 

space shuttle Challenger.  The Rogers Commission 

investigation concluded that the decision to launch the 

rocket was an error given the inadequate data on O-ring 

function at low temperatures.  However, according to Dement 

and Vaughan (1999), a less publicized fact is that the 

Human Factors Sub-committee cited severe sleep deprivation 

of the NASA managers as the cause of the error. 

One may fault the employee(s) for not alerting 

their co-workers or supervisor to their impaired condition.  

However, research suggests that humans are not good at 

assessing their own impairment.  Sagaspe (2003) led a study 

on fatigue, sleep restriction, and performance in 

automobile drivers.   Simple reaction time, prospective 

self-assessment of performance, and instantaneous fatigue 

and sleep ratings were measured at two-hour intervals in 

both a sleep laboratory and on the open French highway.  

Under conditions of sleep restriction, some drivers took 

longer to brake in the natural environment than in the 

laboratory—an average of 23 meters in breaking distance at 

a speed of 75 miles per hour.  A linear correlation between 
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self-assessment and reaction time was found in the 

laboratory condition but not in the road conditions.  The 

researchers concluded that “The lack of correspondence 

between reaction time and prospective self-evaluation of 

performance suggests that self-monitoring in real 

conditions is poorly reliable” (Sagaspe, 2003, p. 277).  

Researchers at the Flight Management and Human Factors 

Division of NASA Ames Research Center would agree:   

A person is not a reliable judge of his or her 
own level of biological sleepiness.  Careful 
studies using physiological measures of 
sleepiness have shown that people report a high 
level of alertness during the day and yet still 
exhibit significant physiological sleepiness. . . 
. Therefore, in attempting to judge how sleepy an 
individual is, the worst person to ask is that 
individual.  It is better to rely on other signs 
and symptoms of fatigue that are related to 
performance decrements (Neri et al., 1997, p. 
11).  

2.   Sleep Debt 

According to Dement (2000), the average individual 

needs one hour of sleep for every two hours awake, which 

equates to eight hours per day.  However, some individuals 

need more sleep and some need less, but each person has a 

specific daily sleep requirement.  Supporting evidence 

comes from a recent sleep debt experiment conducted on 36 

healthy subjects who spent 20 days inside a laboratory 

undergoing performance testing and restricted sleep (Van 

Dongen, Rogers, & Dinges, 2003).  The study revealed that 

subjects’ estimated sleep need was 8.2 hours per day and 

the estimated standard deviation for interindividual 

differences in sleep need was 2.6 hours (Van Dongen, 

Rogers, & Dinges, 2003).   
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How people recover from lost sleep is still being 

studied.  Thus far evidence suggests it must be paid back, 

possibly hour for hour (Dement & Vaughan, 1999).  Mary 

Carskadon and William Dement use the term “sleep debt” to 

liken hours of required but unattained sleep to a monetary 

debt which must be paid back.   

Regardless of how rapidly it can be paid back, 
the important thing is that the size of the sleep 
debt and its dangerous effects are definitely 
directly related to the amount of lost sleep.  My 
guess is that after a period of substantial sleep 
loss, we can pay back a little and feel a lot 
better, although the remaining sleep debt is 
still large.  The danger of an unintended sleep 
episode is still there.  Until proven otherwise, 
it is reasonable and certainly safer to assume 
that accumulated lost sleep must be paid back 
hour for hour (Dement & Vaughan, 1999, p. 60). 

Sleep debt accumulates not only as a result of too few 

sleeping hours, but also from interrupted sleep.  Sleep 

researchers have found that hundreds of nocturnal 

awakenings in a single night, despite normal cumulative 

amounts of total sleep, result in markedly increased 

daytime sleepiness (Dement & Vaughan, 1999).   

Experiments on healthy adults, sleep restricted for 

six or more days, yielded  

statistically significant effects on daytime 
sleep latency [sleep onset], on daytime 
behavioral alertness as measured by psychomotor 
vigilance performance [PVT] lapses, on morning 
metabolic responses, on endocrine functions and 
on immune functions.  Moreover, it appears that 
the sleep latency and behavioral alertness 
effects are directly related to the accumulation 
of sleep debt across days of sleep restriction 
(Van Dongen et al., 2003, p. 7).  
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Worth noting, a sleep-dose-dependent relationship 

between cumulative sleep debt and psychomotor vigilance 

tasks was revealed, but within the same study, waking 

electroencephalography (EEG) did not show progressive 

deterioration with additional sleep debt (Van Dongen et 

al., 2003). Apparently not all measures of waking function 

are good at identifying individuals’ sleep debt.  

3.   Sleep Regulation   

Sleep debt can accumulate in small increments over 

days, such as during the work week, but, according to 

Dement and Vaughan (1999) it is difficult to pay back a 

sizeable debt over the weekend because of the biological 

clock’s alerting process. The biological clock regulates 

sleeping and waking to be in accordance with the daily 

rising and setting of the sun and seasonal light 

fluctuations.  It also synchronizes biochemical events, 

such as chemical, hormonal, and nerve cell activities that 

influence daily fluctuations in feelings and actions 

(Dement & Vaughan, 1999).  In an excerpt from The Promise 

of Sleep, Dement explains the competition between humans’ 

sleep drive and biological clock: 

The biological sleep drive that causes us to fall 
asleep and to remain asleep through the night is 
continuously active, even when we are awake.  In 
fact, when we are awake the homeostatic sleep 
drive is steadily increasing.  Opposing this 
sleep tendency is the alerting action of the 
biological clock.  For humans and other diurnal 
animals, the clock-dependent alerting process is 
active in the daytime and inactive at night, with 
lowered activity in the early afternoon.  The 
push and pull of these opposing processes allows 
us to stay up all day and sleep all night.  In 
summary, the main reason we do not fall asleep as 
soon as we have been awake for a few hours is 
that the homeostatic sleep drive is held at bay 
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by the independent internal stimulation of the 
biological clock.  The main reason that we can 
sleep through the night is that we have 
accumulated sufficient sleep debt during the day 
so that the unopposed homeostatic sleep process 
is free to operate all night long (p. 80). 

The push and pull between the two internal regulators 

results in cycles of human wakefulness.  Below is a graph 

depicting a simplified version of an individual’s 24-hour 

alertness cycle.  Other researchers have since labeled the 

two regulators: the homeostatic process and the circadian 

process.   

 

Figure 1.   Homeostatic and Circadian Processes.            
[From Mass, Wherry, Hogan, & Axelrod, 1998] 

 

Variations of the two-process model of sleep 

regulation are used to predict the timing and duration of 

sleep.  Van Dongen (2003) tested the model in a sleep debt 

experiment, described previously.  The model predicts that 

chronic partial sleep deprivation will result in sleep-

dose-related increases in homeostatic pressure.  Within a 

few days, however, the average predicted waking homeostatic 

pressure stabilizes, suggesting adaptation to chronic sleep 

deprivation (Van Dongen et al., 2003). 

Additionally, they examined whether the two-process 

model would predict neurobehavioral functioning.  The 
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difference between predicted homeostatic pressure and 

observed PVT performance lapses were calculated relative to 

baseline for each individual.  Analysis showed that the 

model did not predict neurobehavioral performance 

capability.  The results also confirmed that sleep debt can 

lead to different responses depending on the measure of 

waking function (Van Dongen et al., 2003).   

The circadian-homeostatic process model of sleep 

regulation appears to be missing a third unidentified 

process affecting waking behavioral alertness.  Already 

identified are interindividual sleep need differences. 

Additionally, using waking EEG as a physiological marker of 

sleep homeostasis, Van Dongen (2003) found that naturally 

short sleepers tolerate a higher homeostatic pressure for 

sleep than long sleepers, suggesting a genetic basis for 

this variability in sleep need.  Another source of natural 

variability, called vulnerability to sleep loss, is the 

differing magnitude of performance loss among individuals 

experiencing the same quantity of lost sleep. Using this 

additional knowledge, a linear mixed-effects model was 

applied to PVT performance deficits. When including inter-

individual variability in ‘sleep need’ and ‘vulnerability 

to sleep loss’ in the model, 82.6% of the variance was 

explained by interindividual differences.  In comparison, 

when the random effects were absent from the model, the 

explained variance dropped to 21.9%. “Thus, under 

conditions of chronic sleep restriction, sleep debt may be 

defined as the cumulative hours of sleep loss with respect 

to the subject-specific daily need for sleep” (Van Dongen 

et al., 2003, p. 11).  
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 Another interindividual difference relates to the 

tendency to be a “lark” or an “owl”, that is, a morning or 

evening person.  “Morning- and evening-type individuals 

differ endogenously in the circadian phase of their 

biological clock” (Kerkhof & Van Dongen, 1996, p. 153).  

Some people are consistently at their best in the morning, 

whereas others are more alert and perform better in the 

evening.  

The three-process model of alertness is a recent 

expansion of the two-process model of sleep-wake regulation 

described earlier.  Sleep inertia is the third process.  

Sleep inertia is the performance impairment and the feeling 

of disorientation experienced immediately after waking up.  

Studies have reported it to last from one minute to four 

hours with severity related to the duration of prior sleep.  

Sleep stage prior to awakening appears to be the most 

critical factor.   

Abrupt awakening during a slow wave sleep (SWS) 
episode produces more sleep inertia than 
awakening in stage 1 or 2, REM sleep being 
intermediate.  Therefore, prior sleep deprivation 
usually enhances sleep inertia since it increases 
SWS.  There is no direct evidence that sleep 
inertia exhibits a circadian rhythm.  However, it 
seems that sleep inertia is more intense when 
awakening occurs near the trough of the core body 
temperature as compared to its circadian peak 
(Tassi & Muzet, 2000, p. 341). 

4.   Arousal and Alertness  

According to Dement, the . . . “level of daytime 

alertness is probably the number-one determinant of how we 

will function mentally—learning, school performance, 

everything . . .” (Dement & Vaughan, 1999, p. 55). 
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In the early days of sleep research, rather than 
talk about sleepiness or alertness itself, 
researchers measured the ability of sleep-
deprived people to perform a task, such as 
stacking blocks in the right order or solving 
word puzzles.  They called this measure 
‘performance failure’ or ‘fatigue.’ The problem 
with this approach is that a person faced with a 
task can temporarily shake off fatigue. . . . 
Sleep-deprived test subjects presented with a 
task changed the conditions of the test by 
arousing themselves and masking the severity of 
their sleepiness, the very thing that researchers 
were trying to measure (Dement & Vaughan, 1999, 
p. 56). 

Individuals often feel awake despite large sleep debts 

because sleepiness is counteracted by arousal.  In addition 

to the biological clock, excitement or stress has alerting 

effects.  While Dement notes that the effects of large 

sleep debt can be overcome in the short term by stimulating 

activities, recent studies suggest there is more to the 

matter.  Research on heat loss and sleepiness (Matsumoto, 

Mishima, Satoh, Shimizu, & Hishikawa, 2002) found that 

among sleep deprived volunteers, physical exercise 

alleviated subjective sleepiness depending on the magnitude 

of the core body temperature elevation.  However, 

performance still decreased, alerting him to the 

possibility . . . “that increased physical activity during 

extended wakefulness could increase the dissociation 

between subjective evaluation of sleepiness and actual 

brain function, resulting in increased risk of human error” 

(Matsumoto et al., 2002).   

The U.S. Army Aeromedical Research Laboratory also 

examined the effectiveness of exercise for sustaining 

performance.  The study consisted of two sessions.   During 

the first session, participants engaged in ten minute bouts 
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of exercise throughout a 40-hour period of sleep 

deprivation.  During the second session participants 

rested. Compared with the resting session, participants 

were more alert immediately following exercise, as 

evidenced by longer sleep latencies.  However, 

“electroencephalogram data collected 50 minutes following 

exercise or rest showed that exercise facilitated increases 

in slow-wave activity, signs of decreased alertness.  

Cognitive deficits and slowed reaction times associated 

with sleep loss were equivalent in both conditions” (Le 

Due, Caldwell, & Ruyak, 2000, p. 249).  Both studies 

concluded that exercise improves alertness, at least 

subjectively, but does not prevent performance decrements.   

Other research indicates sustained performance under 

conditions of sleep deprivation is instable, perhaps 

explaining the differences in literature on arousal’s 

effect on alertness. Sleep deprivation does not eliminate 

the ability to perform neurobehavioral functions, but it 

does make it difficult to maintain stable performance for 

more than a few minutes.  In a study investigating the 

variability in performance as a function of sleep 

deprivation, PVT reaction time means and standard 

deviations increased markedly among subjects and within 

each individual subject in the total sleep deprivation 

(TSD) condition relative to the 2-hour nap every 12 hours 

(NAP) condition (Doran, Van Dongen, & Dinges, 2001). 

Errors of omission [i.e., lapses] and errors of 
commission [i.e., responding when no stimulus was 
present] were highly intercorrelated across 
deprivation in the TSD condition, suggesting that 
performance instability is more likely to include 
compensatory effort than a lack of motivation.  
The marked increases in PVT performance 
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variability as sleep loss continued supports the 
‘state instability’ hypothesis, which posits that 
performance during sleep deprivation is 
increasingly variable due to the influence of 
sleep initiating mechanisms on the endogenous 
capacity to maintain attention and alertness, 
thereby creating an unstable state that 
fluctuates within seconds and that cannot be 
characterized as either fully awake or asleep 
(Doran et al., 2001, p. 253). 

5.  Sleep, Activity, Fatigue and Task Effectiveness 
Model (SAFTETM) and Fatigue Avoidance Scheduling 
Tool (FAST) 

Principal investigator, Dr. Stephen Hursh at Science 

Applications International Corporation (SAIC) teamed up 

with talents from the Air Force Research Laboratory (ARFL), 

Walter Reed Army Institute of Research (WRAIR), and Federal 

Railroad Administration to develop software to manage 

fatigue and alertness for the operational components of the 

Services.  Under an Air Force SBIR awarded to NTI, Inc., 

the software was developed and named Fatigue Avoidance 

Scheduling Tool (FAST).  FAST is an actigraph-based 

application of the Sleep, Activity, Fatigue, and Task 

Effectiveness (SAFTETM) Model, developed by Hursh in 1996, 

but since modified.  SAFTE™ is a three-process, 

quantitative model that was optimized to predict cognitive 

performance, rather than alertness (Eddy & Hursh, 2001). 

The following explanation of the Model comes from a paper 

circulated at the Fatigue and Performance Modeling Workshop 

held in Seattle, WA, June 2002, now published in Aviation, 

Space and Environmental Medicine (March 2004): 

The conceptual architecture of the SAFTE Model is 
shown in Figure [2].  The core of this model is 
schematized as a sleep reservoir, which 
represents sleep-dependent processes that govern 
the capacity to perform cognitive work.  Under 
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fully rested, optimal conditions, a person has a 
finite, maximal capacity to perform, annotated as 
the reservoir capacity (Rc).  While one is awake, 
the actual ‘contents’ of this reservoir are 
depleted, and while asleep, they are replenished.  
Replenishment (sleep accumulation) is determined 
by sleep intensity and sleep quality.  Sleep 
intensity is in turn governed by both time-of-day 
(circadian process) and the current level of the 
reservoir (sleep debt).  Sleep quality is modeled 
as its continuity, or conversely, fragmentation, 
in part determined by external, real-world 
demands, or requirements to perform.  Performance 
effectiveness is the output of the modeled 
system.  The level of effectiveness is 
simultaneously modulated by time-of-day 
(circadian) effects and the level of the sleep 
reservoir.  Transient post-sleep decay of 
performance is modeled by the term inertia 
(Hursh, et al., 2004, p. A45). 

 

 

Figure 2.   SAFTE™ Model. [From Eddy & Hursh, 2001] 
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1% per hour awake.  “The rationale for both linearity and 

the value for the decay slope . . . is derived from a 

straight-line fit of cognitive throughput data obtained 

during 72 h of total sleep deprivation” (Hursh et al., 

2004, p. A46). Additionally, the model estimates the 

circadian process as a two-frequency function.  The 

circadian process is represented as the sum of two cosine 

waves, one with a period of 24 hours, the other with a 

period of 12 hours.   

The two oscillations are out of phase, producing 
an asymmetrical wave form: a gradual rise during 
the day with a plateau in the afternoon and a 
rapid decline at night that closely parallels 
published studies of body temperature.  The 
circadian rhythm of performance is not a simple 
mirror image of variations in body temperature.  
The asymmetrical circadian rhythm combines with a 
gradually depleting reservoir process resulting 
in a bimodal variation in cognitive effectiveness 
that closely parallels published patterns of 
performance and alertness (Hursh et al., 2004,  
p. A47). 

The developers of the SAFTETM Model recognize its 

shortcomings:  

Two major limitations are that the model does not 
provide an estimate of group variance about the 
average performance prediction and it does not 
incorporate any individual difference parameters, 
such as age, morningness/ eveningness, or sleep 
requirement for full performance (Hursh et al., 
2004, p. A51). 

The importance of these limitations depends on how the 

model is applied.  Using the model to predict a particular 

person’s fitness for duty is subject to higher predictive 

error than using the model to predict how a group will 

perform (Hursh et al., 2004).  Others have found the 

importance of inter-individual differences to be more 
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important, explaining more than 50% of total variance in 

performance deficits resulting from up to 40 hours of sleep 

loss (Van Dongen, Maislin, & Dinges, 2004).   

 Another limitation of the SAFTE Model is that it does 

not account for the effects of pharmacological 

countermeasures, such as stimulants, used to extend 

performance or sedatives taken to enhance sleep.  

Stimulants can temporarily improve performance in sleep 

deprived individuals, but they can also interfere with 

sleep (Hursh et al., 2004).   

Critics of the SAFTE model state that it requires 

validation in the field and modification in some areas.  

Although a validation study with the Department of 

Transportation Federal Railway Administration is planned, 

the model has not been validated outside the laboratory 

(Kronauer & Stone, 2004).  Also, in comparison of 

mathematical model predictions to experimental data, the 

SAFTE model “in general did not predict performance well” 

(Van Dongen, 2004, p. A122).  Commentary from the Fatigue 

and Performance Modeling Workshop concluded: 

1Although the 12-h circadian component was 
generally felt to be unnecessary, it was the 
linear function in performance decay that most of 
the audience found unacceptable.  The concept of 
zero performance is not supported by experimental 
data (Kronauer & Stone, 2004, pp. A55-A56). 

                     
1 In Response to Commentary on Fatigue Models for 

Applied Research in Warfighting, SAFTE developers “attempt 
to update and correct some of those impressions, based on 
the version of the model used at the Seattle conference, 
and respond to other concerns about the specific 
mathematical form of some of the model components” (Hursch 
& Balkin, 2004, p. A57). 
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As previously stated, SAFTE™ was applied in the 

development of FAST, a computerized tool to manage fatigue 

and performance.  FAST was originally designed to help 

optimize the operational management of aviation ground and 

flight crews, although it is not limited to that 

application. FAST predicts performance effectiveness from 

sleep and work-schedule information. Corresponding Blood 

Alcohol Equivalencies are also given. Note that the 

majority of states consider driving with a blood alcohol 

level at or above .08 (grams per 10 deciliters) illegal.  

According to FAST, that blood alcohol level corresponds to 

a FAST performance effectiveness of 85%. Effectiveness at 

or above 90% is expected in individuals regularly receiving 

8 hours of continuous sleep per 24 hour period.  

Effectiveness below 65% is expected to be critically 

impaired (Eddy & Hursh, 2001). 

6.  Automated Neuropsychological Assessment Metrics 
(ANAM) and ANAM Readiness Evaluation Tool (ARES) 

Automated Neuropsychological Assessment Metrics 2001 

(ANAMTM 2001) is a Windows-based system consisting of 

computerized tests and batteries designed for clinical and 

research applications.  The tests were constructed to 

measure cognitive processing efficiency in a variety of 

psychological assessment contexts that include 

neuropsychology, fitness for duty, nuerotoxicology, 

pharmacology, and human factors research (Reeves, Winter, 

Kane, Elsmore, & Bleiberg, 2002).  Subtests in ANAMTM are 

designed to “assess attention and concentration, working 

memory, mental flexibility, spatial processing, cognitive 

processing efficiency, memory recall, and arousal/fatigue 

level” (Reeves et al., 2002).  Output includes accuracy, 

speed, and efficiency measures. Validation studies have 
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demonstrated that ANAM measures assess aspects of working 

memory, processing speed, and recall (Reeves et al., Draft 

2002). 

 ARES (ANAMTM Readiness Evaluation System) consists of 

a subset of ANAMTM tests and was developed for use on 

handheld computers, such as Personal Digital Assistants 

(PDAs).  The ARES Commander Battery is intended to provide 

operational commanders with an on-line assessment of a 

crewmember’s ability to sustain levels of concentration, 

working memory, and mental efficiency.  Although it was 

originally intended for commanders in command and control 

centers, it can be used in other military missions, such as 

sustained flight operations, to assess flight crew 

alertness and readiness (Elsmore & Reeves, 2002). 

Data output includes the number of correct responses, 

mean and median response times, and throughput, a measure 

that represents both speed and accuracy in a single score.  

Throughput is computed as the average number of correct 

responses per minute during a testing session.    

C.   SCOPE, LIMITATIONS AND ASSUMPTIONS 

Twenty newly-commissioned staff corps officers 

attending Officer Indoctrination School (OIS) volunteered 

for a study in 2003 conducted by Naval Postgraduate School 

(NPS) Information Technology graduate students developing 

standardized data collection and storage methods for Dr. 

Nita Miller of NPS.  The study ran for five days, with each 

participant keeping a sleep/activity log, wearing an 

Actigraph wristwatch, and taking the ARES Commander Battery 

test on their personal digital assistant (PDA) three times 

per day.  The rank of participants ranged from O-1 to O-3, 

ages 24-36, and consisted of twelve men and eight women, 
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all presumably healthy with no apparent sleep disorder.  

Participants experienced mild to moderate sleep deprivation 

during the normal course of their training.  
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II. METHOD 

A. PARTICIPANTS 

The participants included twenty volunteers, 12 males 

and eight females, ages 24 - 36.  They were presumably 

healthy, with no apparent sleep disorders.  Participants 

were recently commissioned staff corps officers with a 

minimum of 16 years of education and were of ranks O-1 

through O-3. 

B. APPARATUS AND INSTRUMENTS 

Upon arrival, OIS distributed palm pilots on which the 

NPS researchers loaded Sleep and Activity Logs, and the 

ANAM Readiness Evaluation System (ARES).  Three different 

ARES tests are available. The OIS study utilized the ARES 

Commander Battery, which measures Simple Reaction Time (a 

measure of basic psychomotor speed), Running Memory 

Continuous Performance Task (CPT) (a measure of working 

memory and executive functions), and administers the 

Stanford Sleepiness Scale (a subjective measure of 

alertness/fatigue). Additionally, participants wore 

actigraphs, a wristwatch-like device with an accelerometer 

that measures motion and is used to determine activity 

levels.2   

C. DESIGN AND PROCEDURE 

The study design is a prospective study, correlational 

in nature, with repeated measures of participants. Unlike a 

traditional analysis of variance (ANOVA), in which 

individuals are assigned randomly to different treatment 
                     

2 For a thorough description of the methods employed, please refer to 
the NPS thesis written by O’Connor and Pattillo (December 2004).  The 
study is described in Chapter VI. Naval Officer Indoctrination School 
Study in Reengineering Human Performance and Fatigue Research through 
Use of Physiological Monitoring Devices, Web-Based and Mobile Device 
Data Collection Methods, and Integrated Data Storage Techniques. 
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groups and then effects are assessed, in a repeated 

measures design individuals are subjected to more than one 

treatment (Girden, 1992). In this study, repeated 

measurements were obtained from the volunteers over five 

days. Actigraph data were collected, along with sleep and 

activity logs, and used for input into FAST.3  Participants 

logged critical changes in their state, in particular, for 

example, when they went down for sleep, woke up, took the 

watch off, and when they went on and off watch standing 

duty. Additionally, participants were instructed to take 

the ARES Commander Battery three times a day for five days.  

ARES testing took approximately ten minutes per session. 

                     
3 O’Connor and Patillo explain the transformation of raw actigraphy 

data into FAST files, the scoring algorithms employed, and subjective 
decisions they made regarding data cleaning. 
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III. ANALYTICAL STRATEGY 

A. VARIABLES 

1. Response Variable 

FAST Predicted Performance Effectiveness score is the 

continuous response variable.  Observations include FAST 

scores and ARES test results matched by time and date. 

Table 1 lists the range and quantiles of participants’ FAST 

scores.  Thirty scores are excluded from the analysis 

because those observations are missing one or more ARES 

score (see “NA’s”, Table 1). A histogram depicts the 

distribution of FAST scores (Figure 3).  As expected, FAST 

data are negatively skewed with an average predicted 

effectiveness of 90.7%.  

 

 ***  Summary Statistics for data in:  CRM.and.SRT.SPLUS.data *** 
 
                            FAST  
                Minimum:       72.510 
             1st Quantile:    87.210 
        Mean:       90.738 
      Median:       91.650 
        3rd Quantile:    94.990 
    Maximum:       101.530 
    Total N:       415.000 
             NA’s:       30.000 

   Standard Deviation:           5.932 

 

Table 1.   Descriptive Statistics for FAST Performance 
Effectiveness. 
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Figure 3.   Histogram of Observed Fast Scores. 
 
 
2. Predictor Variables  

a. Time Blocks 

FAST incorporates a circadian process within the 

SAFTE™ Model (see Figure 2).   The Model’s circadian 

oscillator is shown in Figure 4.  Major peaks in 

performance and alertness are seen at about 1000 and 2000.  

Minimums are in the early afternoon, at about 1400, and in 

the early morning, around 0400. (Hursh, 2001)    
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Figure 4.   Circadian Oscillator in FAST.  The Curve Marked 
First and Last Are for the First and Third Days, 
Respectively, of 72 Hours of Sleep Deprivation.   

[From Hursh, 2001] 
 

Time blocks were created to reflect FAST’s 

circadian oscillator and the OIS sleep plan. During the OIS 

study, unless assigned to the night watch, participants 

were allowed to sleep from 2200 to 0600.  Various 

partitioning of the 24-hour day were explored in MS Excel.  

The following five partitions appeared to be significant, 

so the FAST and ARES scores were grouped according to these 

time blocks (Table 2).  As expected, Table 3 shows that 

participants rarely took the ARES Commander Battery between 

midnight and 0437 (i.e., Time Block 1).  
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Time Block   From - To 

1 00:00 - 04:47 
2 04:48 - 09:35 
3 09:36 - 14:23 
4 14:24 - 19:11  

5 19:12 - 23:59 
 

Table 2.   The 24-hour Day Partitioned into Five Equal Time 
Blocks, Each Four Hours and 48 Minutes Long, Starting at 

Midnight. 

 

 ***  Summary Statistics for data in:  CRM.and.SRT.SPLUS.data *** 
 
    Time.Block      Frequency 
 
     1:           6        
     2:    125        
     3:  118        
     4:   61        
     5:  105    
 
     

Table 3.   Number of Observations for Each Time Block. 

 

b. Subject and Session 

Although the OIS study had 20 participants, only 

two people completed all 15 scheduled ARES testing sessions 

(Figure 5).  No test scores were collected for participant 

6 and participant 15 tested only once.  The average number 

of ARES sessions across participants is 6.43, and the 

standard deviation is 3.66.  Subject is treated as a factor 

and Session is an integer. 
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Figure 5.   The Number of ARES Testing Sessions Recorded for 
Each Participant. 

c. Simple Reaction Time 

The median reaction time for correct responses 

(medRTC) and the standard deviation of reaction time for 

correct responses, 1st half of the testing session (sdRTC1), 

are continuous numeric variables.  Observations for both 

variables are positively skewed (Figure 6).  It is apparent 

that the two maximum values, 580 milliseconds for medRTC 

and 961 milliseconds for sdRTC1, are outliers; the majority 

of data fall close to the median (Table 4). 

 

 ***  Summary Statistics for data in:  CRM.and.SRT.SPLUS.data *** 
                    medRTC     sdRTC1  
          Minimum:   160.000     7.000 
    1st Quantile:  190.000   25.000 
        Mean:    215.553   56.947 
      Median:   205.000   40.000 
    3rd Quantile:  226.250  67.500 
         Maximum:   580.000      961.000 
    Total N:   208.000      208.000 
       NA's:       0.000     0.000 
   Standard Deviation:  44.421   80.280 
 

Table 4.   Range and Quantiles of the Median (medRTC) and 
Standard Deviation (sdRTC1) of Reaction Time for the 

ARES Simple Reaction Time Test. 
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Figure 6.   Distribution of the Median (medRTC) and Standard 
Deviation (sdRTC1) of Reaction Time Observations for 

the ARES Simple Reaction Time Test. 
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d. Continuous Running Memory 

A continuous numeric variable, sdRTC2 is the 

standard deviation, in milliseconds, of the reaction time 

for correct responses during the second-half of the testing 

sessions.  Also a numeric variable, mRTC2 is the mean 

reaction time of correct responses during the second-half 

of each session; it is the average response latency in 

milliseconds.  Histograms illustrate the shape of the 

distributions of sdRTC2 and mRTC2 (Figure 7). SdRTC2 is 

negatively skewed and ranges from 39 to 190, with a mean of 

115.6 and standard deviation of 34.3 (Table 5).  MRTC2 is 

positively skewed and bimodal; observations range from 297 

to 736, the mean is 464.5 and the standard deviation is 

88.4 (Table 5).  

 

 ***  Summary Statistics for data in:  CRM.and.SRT.SPLUS.data *** 
 
                               sdRTC2      mRTC2  
            Minimum:      39.000  297.000 
    1st Quantile:    90.000  394.000 
            Mean:    115.551  464.473 
           Median:   119.000 472.000 
    3rd Quantile:  140.000  526.000 
          Maximum:   190.000  736.000 
         Total N:   207.000  207.000 
          NA's :        0.000     0.000 
    Standard Deviation:  34.343    88.391 

 

Table 5.   Descriptive Statistics for the Standard Deviation 
(sdRTC2) and Mean (mRTC2) of Reaction Time during the 
2nd half of the ARES Continuous Running Memory Test. 
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Figure 7.   Distribution of the Mean (mRTC2) and Standard 
Deviation (sdRTC2) of Reaction Time Observations for 

the ARES Continuous Running Memory Test. 
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B. DESCRIPTIVE STATISTICS 

The range and variability of reaction time for correct 

responses differ among OIS participants.  As seen in Figure 

8a, for some participants, the range of variability in 

reaction time is double that of co-participants (e.g., the 

sdRTC1 for Subject 17 is more than double that of Subject 

18).  MedRTC appears to be Subject-specific; each 

participant has his own distribution of reaction times, not 

necessarily overlapping other participants’ observations.  

For example, Subjects 13 and 16 have no scores in common 

with Subjects 17 and 20 (Figure 8b). 
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 Figure 8a 
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 Figure 8b 

 

Figure 8.   Standard Deviation (sdRTC1) and Median (medRTC) of 
Reaction Time for Correct Responses by Subject 

 

The ARES Continuous Running Memory predictor 

variables, standard deviation in reaction time (sdRTC2) and 

mean reaction time (mRTC2) for correct responses, are 

plotted against Session (Figure 9).  MRTC2 has an obvious 

downward trend as the Session number increases; improvement 

in sdRTC2 is questionable.  SdRTC2 seems to improve up 

through Session 7, after which the pattern is not apparent 

(Figure 9).  Improvements across Session are suggestive of 

a practice-effect.  
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Figure 9.   Mean (mRTC2) and Standard Deviation (sdRTC2) in 
Reaction Time for Correct Responses across Sessions. 
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C. REGRESSION MODEL AND ANALYSIS 

A linear mixed-effect regression model was developed 

using S-PLUS 6.1, a statistical software package. (S-PLUS 

6.1 for Windows Supplement, 2002)  Mixed-effect models are 

appropriate for repeated measures data because they 

incorporate both fixed and random effects.  Fixed effects 

are parameters associated with an entire population, or 

with repeatable levels of experimental factors.  Random 

effects are associated with experimental units drawn at 

random from a population. The predictor variables are 

modeled as fixed effects, and their parameters are 

estimated by restricted maximum likelihood (REML).  The 

Fixed-Effect part of the linear mixed-effect model assumes 

that the response, FAST scores, is obtained by taking a 

linear combination of the predictors.  The within-group 

errors have a Gaussian (normal) distribution and are 

allowed to be correlated and/or have unequal variances   

(S-PLUS 2000 Professional Edition for Windows, Release 3, 

LME Help). 

Two linear mixed-effect regression models are 

developed, one using the ARES Simple Reaction Time test 

data, the other using Continuous Running Memory test data 

(Figure 10).  For ARES Simple Reaction Time data, the 

random effect is modeled by a random intercept and grouped 

by Subject.  The random effect of ARES Continuous Running 

Memory is also modeled by a random intercept, but is 

grouped by Session. Time Block is a fixed effect common to 

both models.  Additional fixed effect predictors for the 

Simple Reaction Time model are medRTC and sdRTC1.  For the 

Continuous Running Memory model, sdRTC2 and mRTC2 are 

additional fixed effects. 
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a)  Random effects: ~ 1 | Subject  
    Fixed: FAST ~ Time.Block + sdRTC1 + medRTC 
 
b)  Random effects: ~ 1 | Session  
    Fixed: FAST ~ Time.Block + sdRTC2 + mRTC2  
  

Figure 10.   Linear Mixed-Effect Model Formula for a) Simple 
Reaction Time, and b) Continuous Running Memory 
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IV. RESULTS 

A. ARES SIMPLE REACTION TIME LINEAR MIXED-EFFECTS MODEL 

The linear mixed-effects model, using ARES Simple 

Reaction Time data, is FAST’ ~ 93.140 +6.148 * 

(Time.Block1) + 1.344 * (Time.Block2) + 1.374 * 

(Time.Block3) -1.117 * (Time.Block4) + 0.010 * (sdRTC1) -

0.020 * (medRTC).  This is a regression prediction 

equation; it describes the prediction of FAST scores based 

on the predictor variables used in the regression analysis 

(i.e., the right side of the equation).  The intercept and 

coefficients for each variable come from the statistical 

report in Figure 12 (see numbers under Value).   

The intercept is 93.140.  If values are unavailable 

for the predictor variables (i.e., they are set to zero in 

the equation), the model predicts a FAST performance 

effectiveness of 93.14%.  Time.Block is a binary variable; 

its value can be zero or one.  Valid values for SdRTC1 and 

medRTC are continuous numbers that fall within the range of 

data used to generate the model (i.e., 7 to 961 

milliseconds for sdRTC1 and 160 – 580 milliseconds for 

medRTC).  For example, if an individual takes the ARES 

Simple Reaction Time test at 1015 and his medRTC is 205 

milliseconds and his sdRTC1 is 40 milliseconds, using the 

regression prediction equation, his predicted FAST score 

equals 90.814, or 90.81% (Figure 11). 
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 FAST’ ~ 93.140 + 6.148 *(Time.Block1) + 1.344 * 
 (Time.Block2) + 1.374 * (Time.Block3) -1.117 * 
 (Time.Block4) + 0.010 * (sdRTC1) -0.020 * (medRTC) 
 
 Predicted FAST = 93.140 + 6.148*(0) + 1.344*(0) + 
 1.374*(1) -1.117 *(0) + 0.010 *(40) -0.020*(205) 
    
 = 90.814= 90.81% 
 

Figure 11.   Computing a Predicted FAST Performance Effectiveness 
Score using the ARES Simple Reaction Time Linear 

Mixed-Effects Prediction Equation. 
 

  According to the statistical report (Figure 12), 

there is a high probability that there is a relationship 

between FAST performance effectiveness and the predictor 

variables (i.e., Time.Block, sdRTC1, and medRTC). The 

results are statistically significant, as evidenced by p-

values less than .05.  The .05 p-value is sufficiently 

stringent to safeguard against accepting too many 

insignificant results as significant, while not being 

overly difficult to attain (Newton & Rudestam, 1999).  

 

    *** Linear Mixed Effects Model *** 
Random effects: 
 Formula:  ~ 1 | Subject 
          (Intercept)  Residual  
Standard Deviation:    3.069       3.427 
 
Fixed effects: FAST ~ Time.Block + sdRTC1 + medRTC  
              Value   Standard Error  Degrees of Freedom   t-value      p-value  
(Intercept)    93.139    2.080   170    44.777   0.000 
Time.Block1    6.148   1.047   170      5.873   0.000 
Time.Block2    1.344    0.384   170      3.502   0.001 
Time.Block3    1.373    0.249   170      5.509   0.000 
Time.Block4   -1.117    0.154   170         -7.240   0.000 
     sdRTC1    0.010    0.004   170      2.315   0.022 
     medRTC   -0.020    0.010   170         -2.137   0.034 
 
Standardized Within-Group Residuals: 
       Minimum         Quantile 1        Median        Quantile 3       Maximum  
       -2.283       -0.586          0.090            0.516          2.520 
 
Number of Observations: 193   Number of Groups: 17 
 

Figure 12.   SPLUS 6.1 Report for ARES Simple Reaction Time 
Linear Mixed-Effects Model 
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Diagnostic plots displayed in Figure 13 indicate that 

modeling assumptions are met. A residual, or prediction 

error, is the difference between the actual and predicted 

FAST score. Prediction error is expected across the range 

of FAST scores, but variance must be constant 

(homoscedastic).  As shown in Figure 13a, the ARES Simple 

Reaction Time linear mixed-effects model has homoscedastic 

residuals; they are scattered randomly. In contrast, 

heteroscedasticity is indicated when the residuals spread 

or fan out from left to right or right to left.   

An additional assumption of linear regression is that 

within-group errors have a Gaussian (normal) distribution 

(i.e., a bell shaped curve that is symmetrical and 

unimodal).  A normal probability plot or Quantile-Quantile 

(Q-Q) plot is used to evaluate whether or not the data meet 

this assumption.  Figure 13b is a Q-Q plot for the ARES 

Simple Reaction Time model.  The horizontal axis shows the 

location of the points as observed in the distribution.  

The vertical axis shows the location of the points as 

expected if the distribution is normal. A diagonal straight 

line, as seen in Figure 13b, indicates that the observed 

and expected distributions are the same (i.e., the 

distribution is normal), as required.  

A final assumption of linear regression is the absence 

of correlation between error terms (i.e., how strongly they 

are related). This assumption is tested using an 

autocorrelation plot (Figure 13c), which displays the 

correlation of errors (i.e., residuals) across cases.  The 

length of the vertical bars represents the magnitude of the 

correlation, with the value of +/- 1.0 indicating perfect 

correlation.  However, the first position (i.e., Lag 0) is 
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always 1.0.  Figure 13c shows that autocorrelation is 

acceptable for this model. 
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    Figure 13c 

 

Figure 13.   ARES Simple Reaction Time Linear Mixed-Effects Model 
Diagnostic Plots: a) QQ-norm, b) Residuals vs. Fitted 

Values, c) Autocorrelation of Residuals  
 
 

B. ARES CONTINUOUS RUNNING MEMORY LINER MIXED-EFFECTS MODEL 

The linear mixed-effects model using ARES Continuous 

Running Memory data is FAST’ ~ 87.976 + 5.930 * 

(Time.Block1) + 1.180 * (Time.Block2) + 1.4884 * 

(Time.Block3) -0.983 * (Time.Block4) + 0.052 * (sdRTC2) -

0.010 * (mRTC2).  The intercept and coefficients come from 

SPLUS 6.1 output (see Value, Figure 15) As with the 

previous regression prediction equation (i.e., for Simple 

Reaction Time), Time.Block variables can be either zero or 

one, with a one indicating the new observation falls within 

that time block.  Also, valid input for sdRTC2 can be any 

continuous number between 39 and 190 milliseconds.  For 

mRTC2, values must be between 297 and 736 milliseconds.  

The intercept is 87.976.  If inputs are unavailable for the 
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predictor variables, the predicted FAST performance 

effectiveness is 87.98%.  As an example, a new observation 

occurs at 1550, consisting of an ARES Continuous Running 

Memory mRTC2 of 472 milliseconds, and an sdRTC2 of 119 

milliseconds, the predicted FAST score is 88.461, or 88.46% 

(Figure 14). 

 FAST’ ~ 87.976 + 5.930 * (Time.Block1) + 1.180 * 
 (Time.Block2) + 1.488 * (Time.Block3) -0.983 * 
 (Time.Block4) + 0.052 * (sdRTC2) -0.010 * (mRTC2) 

 

= 87.976 + 5.930*(0) + 1.180*(0) + 1.488*(0)  

  - 0.983*(1) + 0.052*(119) -0.010*(472) 

 

= 88.461= 88.46% 

 
Figure 14.   Computing a Predicted FAST Performance Effectiveness 

Score using the ARES Continuous Running Memory Linear 
Mixed-Effects Prediction Equation. 

 

Additionally, the probability of a relationship 

between FAST performance effectiveness and the model’s 

predictor variables (i.e., Time.Block, mRTC2, and sdRTC2) 

is high.  All Time Blocks and sdRTC2 are significant to the 

alpha < .05 level (Figure 15).  The mRTC2 p-value is .06, 

but is retained in the model to encourage further 

exploration of the variable’s relationship with FAST.  
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   *** Linear Mixed Effects Model *** 
 
Random effects: 
 Formula:  ~ 1 | Session 
          (Intercept)     Residual  
Standard Deviation:    0.002     4.460 
 
Fixed effects: FAST ~ Time.Block + sdRTC2 + mRTC2  
              Value   Standard Error  Degrees of Freedom   t-value      p-value  
(Intercept)   87.976    1.842   171         47.755        0.000 
Time.Block1    5.930    1.322   171      4.485        0.000 
Time.Block2    1.179    0.487       171      2.420        0.017 
Time.Block3    1.488    0.307    171      4.844        0.000 
Time.Block4   -0.983    0.191    171         -5.136        0.000 
     sdRTC2    0.052    0.014    171      3.717   0.000 
      mRTC2   -0.010    0.005    171         -1.868   0.063 
  
Standardized Within-Group Residuals: 
       Minimum         Quantile 1       Median        Quantile 3        Maximum  
  -2.199          -0.676      0.107          0.629            3.058 
 
Number of Observations: 192 
Number of Groups: 15  
 
 

Figure 15.   SPLUS 6.1 Report for ARES Continuous Running Memory 
Linear Mixed-Effects Model 

 

Diagnostic plots of the model’s residuals indicate 

that modeling assumptions are met. Residuals are 

homoscedastic (Figure 17a), within-group errors have a 

Gaussian (normal) distribution (Figure 16b), and there is 

no strong correlation among residuals (Figure 16c). 
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Figure 16.   ARES Continuous Running Memory Linear Mixed-Effects 
Model Diagnostic Plots: a) QQ-norm, b) Residuals vs. 

Fitted Values, c) Autocorrelation of Residuals  
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V. DISCUSSION 

Modeling fatigue, sleepiness, and performance is of 

significant interest to the military operational community.  

Because a person is not a reliable judge of his or her own 

level of biological sleepiness, commanders require an 

objective means to assess their crewmembers’ ability to 

perform.  One such method is FAST, the software application 

based upon SAFTETM. SAFTETM is a biomathematical model 

designed to predict individual and group performance under 

conditions of sleep deprivation.  Also, psychomotor 

vigilance tests, such as the ARES Commander Battery, 

provide instant feedback on an individual’s ability to 

sustain levels of concentration, working memory, and mental 

efficiency. 

FAST is currently the preferred tool used to predict 

performance.  However, days of sleep and activity data must 

be collected before a meaningful assessment can be 

produced. In contrast, the ARES Commander Battery takes 

less than 10 minutes and can be administered on a digital 

personal assistant.  ARES is a new software package that 

has not been validated, but is under consideration as a 

quick, inexpensive method of testing an individual’s level 

of functioning in a military operational setting. 

Analysis of Officer Indoctrination School data was 

aimed at identifying how ARES Simple Reaction Time and 

Continuous Running Memory test scores vary by subject, 

session, and time of day.  Additionally, the relationship 

between ARES data and FAST performance effectiveness scores 

were explored. Time of day was partitioned into five time 

blocks that capture the changing direction of the human 
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alertness curve (see Figure 1).  Linear mixed-effects 

models were built using search strategies, that is, all 

possible combinations of ARES variables were explored as 

predictors of FAST scores (i.e., the response variable).  

ARES variables analyzed include the mean, median, and 

standard deviation of reaction times for correct and 

incorrect responses; throughput, a measure of speed and 

accuracy; and, inter-trial responses, key presses between 

stimuli when the screen is blank.  These measures were 

available for the entire session, the first half, and the 

second half of each trial.   

Two linear mixed-effects models were developed; one 

using ARES Simple Reaction Time data, the second using ARES 

Continuous Running Memory data.  Time Block was included as 

a fixed effect in both models.  The standard deviation 

(sdRTC1) and median (medRTC) reaction time for correct 

responses are additional fixed effects in the ARES Simple 

Reaction time model (Figure 10).  For the ARES Continuous 

Running Memory model, the standard deviation (sdRTC2) and 

mean (mRTC2) reaction time for correct responses are fixed 

effect predictor variables (Figure 10).  

Mixed-effects modeling is preferred in research on 

human neurobehavioral functions because it allows for 

isolation of variability due to both inter- and intra-

individual differences (Van Dongen et al., 2004).  The ARES 

Simple Reaction Time linear mixed-effects model requires 

Subject in the random effects formula.  Without Subject, 

the fixed effects predictors, with the exception of Time 

Block, were statistically insignificant.  Additionally, the 

residuals were heteroscedastic and non-normal.  Clearly, 

Subject must be modeled as a random effect.   



49 

For the ARES Continuous Running Memory linear mixed-

effects model, Session was the key random effect.  Subject 

was explored, but did not lead to a good model.  It is 

important to note that these models are almost certainly 

over-fit to the OIS data.  Numerous variations and 

combinations of predictor variables were explored.  The 

final models include the only statistically significant 

combination of variables found to adhere to linear 

regression modeling assumptions. Because variable selection 

based on searching exploits chance patterns in the Officer 

Indoctrination School sample, conclusions should not be 

applied to other samples or the population.  Additional 

studies need to be conducted to further explore these 

findings. 

Additional insights came from in-depth exploration of 

variables. Unexpectedly, the three variables for throughput 

(i.e., throughput, throughput1, and throughput2) did not 

account for variance in FAST performance effectiveness.  

Also, many ARES scores, including those used in the models, 

improve with additional sessions, suggesting a potential 

bias posed by training.    There is an indication that 

performance improves with continued trials in this study, a 

phenomenon commonly observed in human research. 

An advantage of a repeated measures strategy is that 

it requires fewer individuals and the group serves as its 

own control.  However, disadvantages include attrition of 

subjects.  While this study started with 20 volunteers, 

only two participants completed all fifteen testing 

sessions.  Also, practice, carry-over and fatigue can bias 

the results.4  Evidence of a practice-effect is seen in the 
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downward, improving trend of ARES testing measures (e.g., 

mRTC2) as the number of testing sessions increase.  

Overall, this study identified ARES variables that 

show promise as instantaneous indicators of human 

performance decrement under conditions of mild sleep 

deprivation (i.e., an average of six hours per night).  

Equally important, although it was initially expected for 

throughput to be the primary indicator of an individual’s 

biological sleepiness, throughput did not account for 

variance in FAST performance effectiveness.  Additionally, 

inter-individual differences accounted for much of the 

variability in ARES Simple Reaction Time scores, but 

Session explained variability in ARES Continuous Running 

Memory scores. 

It is recommended that future studies include numerous 

practice sessions on the ARES Commander Battery to overcome 

the improving trend found across sessions.  Additionally, 

in this study, baseline FAST performance effectiveness 

values were set to individuals’ average FAST score during 

the five-day study.  The three days prior to the study were 

conditioned, on an individual basis, to the average sleep 

time per night of the study. For example, if a participant 

averaged 362 minutes per night, this average was used to 

condition FAST for the three days prior to data collection.  

To ensure accurate baseline FAST performance effectiveness 

values, it is recommended that adequate actigraphy and 

sleep log data be collected prior to beginning the study 

data collection period.  

                     
4 Girden (1992) discusses biases and methods to correct for bias, 

however most limitations of a repeated measures design appear to be an 
issue when multiple levels (i.e., more than one treatment) are 
employed.  This OIS study uses only one level. 
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